P
 Pearson

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Level In Biology (WBI11)
Paper 01 Molecules, Diet, Transport and Health

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question paper log number P69498A
Publications Code WBI11_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (a)}$	The correct answer is C		
	\boldsymbol{A} is incorrect because starch is insoluble in water and consists of amylose and amylopectin is insoluble in water B is incorrect because starch is insoluble in water and consists of amylose and amylopectin is insoluble in water \boldsymbol{D} is incorrect because starch has 1-4 bonds as well as 1-6		(1)

Question number	Answer	Additional guidance	Mark
1(b)(i)	An answer that includes the following points:	IGNORE $1-4 / 1-6$	
	• glycosidic (1)	IGNORE a and β	
	• (a) glucose (1)	IGNORE a and β	(4)

Question number	Answer	Additional guidance	Mark
1(b)(ii)	• condensation (reaction) (1)	ACCEPT polymerisation	

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \mathbf{1 (b) (i i i) ~} & \text { The correct answer is C } & & \\ & \boldsymbol{A} \text { is incorrect because the molecular mass is } 180+180-18=342 \\ \boldsymbol{B} \text { is incorrect because the molecular mass is } 180+180-18=342 \\ \boldsymbol{D} \text { is incorrect because the molecular mass is } 180+180-18=342\end{array}\right)$

Question number	Answer	Additional guidance	Mark
2(a)(i)	The correct answer is B		
	A is incorrect because the aorta takes blood away from the left hand side of the heart C is incorrect because pulmonary vein returns blood to the left hand side of the heart D is incorrect because the vena cava returns blood to the right atrium	(1)	

Question number	Answer	Additional guidance	Mark
2(a)(ii)	The correct answer is \mathbf{A}		
	B is incorrect because stage F which is ventricular systole \boldsymbol{C} is incorrect because \boldsymbol{F} is ventricular systole \boldsymbol{D} i incorrect because \boldsymbol{F} is ventricular systole	(1)	

Question number	Answer	Additional guidance	Mark
2(b)(i)	• values read from the graph and subtracted to give the time for one heart beat (1)	$0.8 /$ any pair of values that give 0.8 when subtracted	
	• 75.0 (1)	DO NOT ACCEPT 75 ECF from $m p 1$ if values correspond to readings from graph	
Bald answer of $75.0=2$ marks Bald answer of $75=1$ mark	(2)		

Question number	Answer	Additional guidance	Mark
2(b)(ii)	An answer that includes three of the following points: - graph will be \{the same / similar in\} \{shape / position\} - because the left hand side and right hand side beat simultaneously (1) - peaks will be lower (1) - because pressure in right hand side is lower \{as blood is only pumped to lungs / to prevent damage to alveoli\} (1)	NB 'It' refers to the line for the right ventricle NB accept converse where appropriate ACCEPT line ACCEPT description e.g. both ventricles contract at the same time IGNORE graph lower down ACCEPT because right ventricle has \{less muscle / thinner walls\} as blood is only pumped to lungs less force to lungs NB If candidate says that there is something drawn on the graph you must send it to review	(3)

Question number	Answer	Additional guidance	Mark
3(a)	A description that includes the following points: - contain \{deoxyribose / pentose / 5 carbon sugar\}, phosphate and bases (1) - (mononucleotides / bases) held together by hydrogen bonds (1) - between \{complementary bases / named example\}	NB ignore statements clearly relating to RNA ACCEPT pair contains purine and pyrimidine / (mono)nucleotide contains either purine or pyrimidine phosphate group / $\mathrm{PO}_{4}{ }^{3-}$ DO NOT ACCEPT P / Pi / wrong formulae IGNORE stated number of H bonds ACCEPT A / T / C / G IGNORE descriptions of mononucleotides joined by phosphodiester bonds in a strand NB points can be awarded from clearly labelled diagrams	(3)

Question number	Answer	Additional guidance	Mark
3(b)	- number of seconds for molecules to replicate calculated (1) - 833 (1) OR - number of molecules replicated in 1 hour (1) - 833 (1)	(150 million $\div 50$) 3000000 $(50 \times 60 \times 60=180000$ Bald answer of $833=2$ marks Bald answer of $833.3=1$ mark unless given as a recurring number	(2)

Question number	Answer	Additional guidance	Mark
3(c)(i)	An explanation that includes the following points: - bind to each strand of the DNA (to initiate replication) (1) - credit function of DNA polymerase (1) - so that the DNA can be synthesised in both directions (1)	ACCEPT works at both ends of the bubble IGNORE ref to $3^{\prime} / 5^{\prime}$ e.g. lines up nucleotides (along each strand) forms phosphodiester bonds (between adjacent nucleotides) repairs mistakes in replication IGNORE forms hydrogen bonds between nucleotides	(2)

Question number	Answer	Additional guidance	Mark
3(c)(ii)	An answer that includes the following points:		
	- to speed up the process (of DNA synthesis) (1)	ACCEPT wrong figures implied from a wrong calculation hours $\}(1)$	(3)
so that cell division is fast enough (1)			

Question number	Answer	Additional guidance	Mark
4(a)	- the \{length of DNA / sequence of (DNA) bases\} that code for \{amino acids / (poly)peptide / protein\} (1)	ACCEPT nucleotides for bases primary structure of protein	(1)

Question number	Answer	Additional guidance	Mark
4(b)	An explanation that includes the following points: - because the mutation is in the gene coding for the CFTR (protein) (1) - therefore the CFTR (protein) does not function correctly (1) - credit details of dysfunction (resulting in very thick sticky mucus) (1) - therefore the mucus will be (very) \{thick / sticky\} (1)	ACCEPT mutation in CFTR gene ACCEPT change in structure e.g. reduced transport of chloride ions out of the cell sodium ions move into the cell water leaves the mucus and enters the cell	(3)

Question number	Answer	Additional guidance	Mark
4(c)	An answer that includes three of the following points: - couples (both) carrying one copy of the mutation can be identified (1) - they can then make (an informed) \{decision / choice\} (about having a child) (1) - credit an example of their options (1) - resulting in fewer babies being born who are homozygous (1)	ACCEPT couples who are (both) heterozygous / have a CF allele DO NOT ACCEPT choose which embryos to implant e.g not having a child / adoption / IVF DO NOT ACCEPT have an abortion ACCEPT two copies of the mutation fewer heterozygous babies born	(3)

Question number	Answer	Additional guidance	Mark
5(a)(i)	A description that includes three of the following points: • fibrous protein (1)		
	• (protein) composed of \{three polypeptide chains / three-stranded / triple\} helix (1)		
	• held by hydrogen bonds (between the chains) (1)	e.g every third amino acid is a glycine, repeating sequences of amino acids, high content of \{glycine / proline / hydroxyproline $\}$	(3)

Question number	Answer	Additional guidance	Mark
5(a)(ii)	An explanation that includes the following points: - gives (the wall) (tensile) strength (1)	IGNORE refs to elastic properties and recoil	
- so that the aorta \{does not get damaged by / can withstand\} pressure (of the blood leaving the heart) (1)	IGNORE prevents aorta from collapsing		

Question number	Answer	Additional guidance	Mark
5(b)	Indicative content: Graph 1 - older male monkeys have more stiffness than younger males (D) - older female monkeys have more stiffness than younger females (D) - older males have more stiffness than older females (D) - probably significant as error bars do not overlap (C) - not much difference in stiffness between younger males and females (D) - as error bars overlap (C) - age increases aortic stiffness in both males and females (C) - age has a greater effect on aortic stiffness in males than females (C) Graph 2 - density of collagen decreases slightly with age (D) - males of all ages have (slightly) more collagen that females (C) - probably not significant as error bars overlap (C) - neither age nor sex affects density of collagen (C) - changes in stiffness do not appear to be related to the density of collagen (C) Graph 3 - higher type 1 in younger monkeys than older ones (D) - more type 1 in females than males at each age (D) - no error bars shown to judge significance (C) Graph 4 - more type 8 in older male monkeys (D) - may not be a difference in type 8 between older and younger females (D) - no error bars to judge significance (C) - the type of collagen appears to determine stiffness (C) - stiffness associated with decrease in type 1 and increase in type 8 (C)	Level 1 1 mark = description made from one graph (D) 2 marks = descriptions made from two graphs (D) Level 2 3 marks = plus one conclusion made (C) 4 marks = plus two conclusions made (C) Level 3 5 marks = two conclusions and comments on the other two graphs 6 marks = three conclusions that includes the asterisked conclusion (C*) and comments on the other two graphs Description = comparison of one variable Conclusion = summary statement that includes both age and sex interpretation of error bar and significance of data - not reliability links between 2 graphs	(6)

Question number	Answer	Mark
$\mathbf{6 (a) (i)}$	The only correct answer is D	
	\boldsymbol{A} is incorrect because diffusion does not use proteins \boldsymbol{B} is incorrect because diffusion does not use proteins Cis incorrect because diffusion does not use proteins	(1)

Question number	Answer	Mark
6(a)(ii)	The only correct answer is B	(1)
	A is incorrect because diffusion does not use energy C is incorrect because facilitated diffusion does not use energy D is incorrect because facilitated diffusion does not use energy	

Question number	Answer	Mark
$\mathbf{6 (a) (\text { iii) }}$	The only correct answer is \mathbf{B}	
	\boldsymbol{A} is incorrect because solutes can move against their concentration gradient in active transport C is incorrect because solutes can move against their concentration gradient in active transport D is incorrect because solutes can move against their concentration gradient in active transport	$\mathbf{(1)}$

Question number	Answer	Additional guidance	Mark
6(b)	An explanation that includes the following points: - (free water molecules) because some water molecules are \{restricted / prevented\} from movement (1) - (partially permeable membrane\} because membrane allows some (types of) molecules to pass through it (1) - (down a water potential gradient) because water molecules move \{from a dilute solution to a more concentrated one / from a high osmotic potential to a lower one / from a high solute potential to a lower one\} (1)	ACCEPT a description ACCEPT from a low concentration of solute to a high concentration of solute from hypotonic to hypertonic solution IGNORE from a high water concentration to a lower one	(3)

Question number	Answer	Additional guidance	Mark
*6(c)	Indicative content: - water content decreases when crabs first moved (D) - because water passes out of cells by \{osmosis / description of osmosis\} (E) - water content then increases gradually (D) - because of the increase in amino acid concentration (E) - amino acid increases (D) - sharply at first and then rate decreases (D) - because \{insoluble / muscle\} proteins broken down into amino acids (E) - by hydrolysis (E) - because crab eats more \{protein / amino acids\} (E) - which is digested into amino acids (E) - which are taken up into the cells by \{active transport / facilitated diffusion\} (from the blood) (E) - water content increases because the amino acid content increase (E) - which makes the cytoplasm more concentrated than the sea water (E) - therefore crabs do not die from dehydration (E)	Level 1 1 mark = simple description of one graph 2 marks = simple description of both graphs Level 2 3 marks = and a simple explanation of one graph 4 marks = and a simple explanation of both graphs Level 3 5 marks = a simple explanation of one graph and a more detailed explanation for the other graph 6 marks = a more detailed explanation for both graphs	(6)

Question number	Answer	Mark
7(a)(i)	The only correct answer is \mathbf{A}	
	B is incorrect because a person can modify their alcohol intake C is incorrect because a person can modify their blood pressure Dis incorrect because a person can change their level of activity	$\mathbf{(1)}$

Question number	Answer	Additional guidance	Mark
7(a)(ii)	An explanation that includes the following points:		
	• because many factors cause CVD (1)	ACCEPT two named drugs and what they treat IGNORE wrong drugs	(2)

Question number	Answer	Additional guidance	Mark
7(b)(i)	An explanation that includes the following points: - because antioxidants reduce free radicals - therefore \{cell damage / damage to lining of blood vessels / oxidative stress\} will be reduced (1) - therefore reducing \{plaque / atheroma\} formation (due to decreased free radicals) (1)	ACCEPT neutralise / donate electrons to / break down / stabilise IGNORE incorrect consequences	(3)

Question number	Answer	Additional guidance	Mark
7(b)(ii)	An explanation that includes the following points: - \{study / data\} will not be valid - diet has an impact on CVD (1) - credit an example explained (1)	IGNORE non-dietary factors IGNORE reliability / accuracy ACCEPT \{increase risk / decrease risk\} in correct context e.g. high salt causes high blood pressure high fibre reduces cholesterol absorption	(3)

Question number	Answer	Additional guidance	Mark	
7(b)(iii)	An explanation that includes the following points:	IGNORE non-dietary examples		
- because diet affects a number of risk factors (1)	credit example of change in diet and the risk factor it reduces (1)	e.g. salt intake can be reduced to lower blood pressure \{saturated /animal\} fats can be reduced to reduce \{cholesterol levels / atheroma formation\} unsaturated fats can be increased to reduce \{cholesterol levels / atheroma formation\}	(2)	

Question number	Answer	Additional guidance	Mark
8(a)(i)	\bullet GUG	ACCEPT guanine uracil guanine / CAC / Cytosine adenine cytosine IGNORE val / valine	(1)

Question number	Answer	Additional guidance	Mark
8(a)(ii)	• substitution	DO NOT ACCEPT frameshift / deletion /addition / insertion IGNORE $\{$ gene / point $\}$ mutation	(1)

Question number	Answer	Additional guidance	Mark		
8(a)(iii)	An answer that includes the following points: - the R groups (of these two amino acids) have different \{properties / bonding\} (1)	ACCEPT amino acids have different properties			
- glu may have repelled polar groups on other					
haemoglobin molecules (1)					
- \{val / hydrophobic R group / hydrophobic part\}					
might form other (hydrophobic) interactions (with					
other haemoglobin molecules) (1)					
- (part of haemoglobin containing) val (R group) turns					
away from \{water / cytoplasm\} (1)				\quad	ACCEPT bonds / Van der Waals
:---					
DO NOT ACCEPT incorrect named bonds					
ACCEPT repels water					
DO NOT ACCEPT blood / plasma					

Question number	Answer	Additional guidance	Mark
8(b)	- number of non-affected babies calculated (1) - $0.002: 1 / 2 \times 10^{-3}: 1(1)$	(140 million - $305800=$) 139694200 0.002189 ACCEPT $0.0022 / 0.00219 / 0.002189$ ACCEPT 1 : 457 / 456.8 Bald answer = 2 marks	(2)

Question number	Answer	Additional guidance	Mark
8(c)(i)	• values read correctly from the graph (1)	ACCEPT $4.4 / 4.9$ and $5.7 / 5.8 / 7.7 / 7.8$	
	• $3.3 / 3.4$ (1)	ACCEPT ecf for correct subtraction using $4.4 / 7.7 /$ $7.8\}$ and one incorrect value Bald answer $=2$ marks	(2)

Question number	Answer	Additional guidance	Mark
8(c)(ii)	An answer that includes the following points:	NB accept converse throughout but all conclusions must be comparative	
	person without the disease has higher saturation than person with the disease (at all partial pressures of oxygen) (1)	ACCEPT refs to affinity (for oxygen) IGNORE graph shifted	

| Question
 number | Answer | Additional guidance | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 8(c)(iii) | • 120 (days) (1) | | |
| | | | (1) |

Question number	Answer	Additional guidance	Mark
8(c)(iv)	An explanation that includes three of the following points: - (change in structure of haemoglobin) haemoglobin \{binds / carries\} less oxygen (1) - (shape of red blood cell) smaller surface area so less oxygen diffuses in / red blood cells get lodged in blood vessels preventing flow of blood to cells (1) - therefore less oxygen to \{cells / tissues\} so \{less available for (aerobic) respiration / switch to anaerobic respiration\} (1) - credit an example of why less oxygen to cells could be fatal (1)	NB accept converse where appropriate ACCEPT named cell / tissue e.g. heart attack, stroke, sepsis, infection	(3)

